ON THE STABILITY OF THE FLOW OF A VISCOELASTIC FLUID DOWN AN INCLINED PLANE

A. T'. Listrov

Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 5, pp. 102-105, 1965

ABSTRACT: The paper presents an analysis of laminar flow of a film of viscoelastic fluid flowing under gravity down an infinite inclined plane. It is assumed that the mechanical behavior of the fluid can be represented by a generalized Maxwell model, whose constitutive equation contains a time derivative of the deviator of the stress tensor in the Jaumann sense [1, 2]. The equations of motion of the viscoelastic fluid considered here admit an exact solution for the case of rectilinear laminar flow with a plane free boundary. The stability of this flow with respect to surface waves is investigated by the method of successive approximations described in [3, 4].

1. The viscoelastic flow of several real fluids can be approximately described by the generalized Maxwell model [2]

$$
\begin{gathered}
\varepsilon_{i i}=0, s_{i k}=2 \mu \varepsilon_{i k}-\lambda\left(\frac{\partial s_{i k}}{\partial t^{*}}+v_{j} \frac{\partial s_{i k}}{\partial x_{j}}+\omega_{i j} s_{j k}+\omega_{k j} s_{i j}\right)(1.1) \\
\varepsilon_{i k}=\frac{1}{2}\left(\frac{\partial v_{k}}{\partial x_{i}}+\frac{\partial c_{i}}{\partial x_{k}}\right), \quad \omega_{i k}=\frac{1}{2}\left(\frac{\partial v_{k}}{\partial x_{i}}-\frac{\partial v_{i}}{\partial x_{k}}\right)(i, j, k=1,2,3) .
\end{gathered}
$$

Here $s_{i k}$ are the components of the deviator of the stress tensor, v_{j} are the components of the velocity vector, μ is the coefficient of viscosity, λ is the relaxation time, and x_{j} are rectangular Cartesian coordinates.

The viscoelastic flow of a relaxing fluid with finite rates of strain is governed by (1.1) and the equations of motion

$$
p\left(\frac{\partial v_{k}}{\partial t^{*}}+\frac{\partial v_{k}}{\partial x_{j}} v_{j}\right)=-\frac{\partial p^{*}}{\partial x_{k}}+\frac{\partial s_{k j}}{\partial x_{j}}+F_{k} \quad(j, k=1,2,3) .(1,2)
$$

Here F_{k} are the projections of the body force, ρ is the density, and p^{*} is the hydrostatic pressure. To analyze the stability of the flow of a film of thickness d flowing under the action of gravity down a plane inclined at an angle β with respect to the horizontal, we introduce the dimensionless variables

$$
\begin{gathered}
t=\frac{t^{*} k}{d}, \quad p=\frac{p^{*}}{\rho k^{2}}, \quad x=\frac{x_{1}}{d}, \quad u=\frac{v_{1}}{k}, \quad v=\frac{v_{2}}{k} \\
y=\frac{x_{2}}{d}, \quad s_{x x}=\frac{s_{11}}{\rho k^{2}}, \quad s_{y y}=\frac{s_{22}}{\rho k^{2}}, \quad s_{x y}=\frac{s_{12}}{\rho k^{2}}, \quad k=\frac{\rho g d^{2} \sin \beta}{3 \mu},
\end{gathered}
$$

where g is the acceleration of gravity.
In the case of two-dimensional unsteady flow with $F_{1}=\rho \mathrm{g} \sin \mathrm{B}$, $F_{2}=\rho g \cos \beta, F_{3}=0$, Eqs. (1.1), (1.2) take the form

$$
\begin{gather*}
\frac{\partial u}{\partial t}+\frac{\partial u}{\partial x} u+\frac{\partial u}{\partial y} v=-\frac{\partial p}{\partial x}+\frac{3}{R}+\frac{\partial s_{x x}}{\partial x}+\frac{\partial s_{x y}}{\partial y}, \\
\frac{\partial v}{\partial t}+\frac{\partial v}{\partial x} u+\frac{\partial v}{\partial y} v=-\frac{\partial p}{\partial y}+\frac{3 \operatorname{ctg} \beta}{R}+\frac{\partial s_{x y}}{\partial x}+\frac{\partial s_{x x}}{\partial y}, \\
s_{x x}=-s_{y y}=\frac{2}{R} \frac{\partial u}{\partial x}-\tau\left[\frac{\partial s_{x x}}{\partial t}+\frac{\partial s_{x x}}{\partial x} u+\frac{\partial s_{x x}}{\partial y} v+s_{x y}\left(\frac{\partial u}{\partial y}-\frac{\partial v}{\partial y}\right)\right], \\
s_{x y}=\frac{1}{R}\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right)-\tau\left[\frac{\partial s_{x y}}{\partial t}+\frac{\partial s_{x y}}{\partial x} u+\frac{\partial s_{x y}}{\partial y} v+s_{x x}\left(\frac{\partial u}{\partial x}-\frac{\partial v}{\partial x}\right)\right], \\
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0 \quad\left(R=\frac{k d \rho}{\mu}, \quad \tau=\frac{\lambda k}{d}\right) . \tag{1.3}
\end{gather*}
$$

These equations are satisfied by the relations

$$
\begin{gather*}
s_{x y}{ }^{\circ}=-\frac{3}{R} y, \quad s_{x x^{\circ}}=-\frac{3 \tau}{R} \frac{d u^{2}}{d y}, \quad p^{\circ}=-s_{x x}^{\circ}+\frac{3 \operatorname{ctg} \beta}{R} y \\
u^{\circ}=\frac{1}{6 \tau^{2}} \ln \frac{1+\sqrt{1-36 \tau^{2}}}{1+\sqrt{1-36 \tau^{2} y^{2}}}+\frac{1}{6 \tau^{2}}\left(\sqrt{1-36 \tau^{2} y^{2}}-\sqrt{1-36 \tau^{2}}\right) \\
\frac{d u^{\circ}}{d y}=\frac{-1+\sqrt{1-36 \tau^{2} y^{2}}}{6 \tau^{2} y} \tag{1.4}
\end{gather*}
$$

which describe the steady flow of a film with a plane stress-free surface, flowing under gravity down an inclined plane, with the no-slip condition at the plane $y=1$ (Fig. 1).

Fig. 1

From (1.4) it can be seen that rectilinear flow of the film is possible when $\tau<1 / 6$. When $\tau=0$, equations (1.4) describe the flow of a film of Newtonian fluid [4].

We expand the velocity $u^{\circ}(y, T)$ in a power series of the small parameter \boldsymbol{T}, and truncate the expansion of each expression in (1.4) after the τ^{2} term. The result is

$$
\begin{gather*}
s_{x y}^{\circ}=-\frac{3}{R} y, \quad s_{x x}{ }^{\circ}=-s_{y y}^{\circ}=\frac{9 \tau}{R} y^{2}, \\
u^{\circ}=\frac{3}{2}\left(1-y^{2}\right)+\frac{27}{4} \tau^{2}\left(1-y^{4}\right) \\
\frac{d u^{\circ}}{d y}=-3 y-27 \tau^{2} y^{3} \tag{1.5}\\
p^{\circ}=-\frac{9 \tau}{R} y^{2}+\frac{3 \operatorname{ctg} \beta}{R} y .
\end{gather*}
$$

2. We proceed to investigate the stability of solution (1.5) with respect to two-dimensional perturbations. Consider a two-dimensional unsteady flow of the form

$$
\begin{aligned}
& u=u^{\circ}+u^{\prime}(t, x, y), \quad v=v^{\prime}(t, x, y), \quad p=p^{\circ}+p^{\prime}(t, x, y), \\
& s_{x x}=s_{x x}{ }^{\circ}+s_{x x}^{\prime}(t, x, y), \quad s_{x y}=s_{x y}{ }^{\circ}+s_{x y}(t, x, y) .
\end{aligned}
$$

Here $u^{\circ}, p^{0}, s_{x x}{ }^{\circ}, s_{x y}{ }^{0}$ are parameters of the basic flow (1.5), and $u^{\prime},{ }^{\prime} X_{x}{ }^{\prime},{ }^{s}{ }_{x y}{ }^{\prime}, v^{\prime}, p^{\prime}$ are the two-dimensional perturbations.

At the perturbed free surface $y=\eta(t, x)$ we have the kinematic and dynamic conditions [4]

$$
v=\frac{\partial \eta}{\partial t}+u \frac{\partial \eta}{\partial x}
$$

$s_{x x}\left[\cos ^{2}(v, x)-\cos ^{2}(v, y)\right]+2 s_{x y} \cos (v, x) \cos (v, y)-p=-S \frac{\partial^{2} \eta}{\partial x^{2}}$,

$$
\begin{gather*}
2 s_{x x} \cos (v, x) \cos (v, y)+s_{x y}\left[\cos ^{2}(v, y)-\cos ^{2}(v, x)\right]=0 \\
\left(S=T / \rho d k^{2}\right) \tag{2.2}
\end{gather*}
$$

Here ν is the outer normal to the free surface, and T is the coefficient of surface tension.

At the surface $y=1$ we have the conditions $u^{\prime}(t, x, 1)=0$, $v^{\prime}(t, x, 1)=0$. We linearize (1.1), (2.2), taking account of (1.5) and (2.1). Introducing the perturbation stream function by means of the definitions $u^{\prime}=\partial \Psi / \partial y, v^{\prime}=-\partial \Psi / \partial x$, we represent the perturbations in the form

$$
\begin{aligned}
& p^{\prime}=f(y) e^{i \alpha(x-c t)}, \quad s_{x x}=s_{x x}^{*}(y) e^{i \alpha(x-c t)} \\
& s_{x y \prime}^{\prime}=s_{x y}^{*}(y) e^{i \alpha(x-c t)}, \quad \psi=\varphi(y) e^{i \alpha(x-c t)}
\end{aligned}
$$

The variables $f(y), \varphi(y), s_{x x}{ }^{*}(y), s_{x y}{ }^{*}(y)$ are determined by the system

$$
\begin{gathered}
i x\left(u^{\circ}-c\right) \frac{d \varphi}{d y}-i \alpha \frac{d u^{2}}{d y} \varphi=-i x!-i \alpha s_{x x}^{*}+\frac{d s_{x y}^{*}}{d y}, \\
\alpha^{2} \varphi\left(u^{\circ}-c\right)=-\frac{d f}{d y}+i \alpha s_{x y}^{*}-\frac{d s_{x x}^{*}}{d y}, \\
R s_{x y^{*}}=\theta_{1}\left(\frac{d^{2} \varphi}{d y^{2}}+\alpha^{2} \varphi\right)+18 \tau^{2} y^{2}\left(\alpha^{2} \varphi-\frac{d^{2} \varphi}{d y^{2}}\right)
\end{gathered}
$$

$$
\begin{gather*}
+\theta_{2}\left(6 i \alpha y \frac{d \varphi}{d y}-3 i \alpha \varphi\right)+6 \tau^{2} \alpha^{2} y\left(u^{\circ}-c\right), \\
R s_{x x^{*}}=2 \theta_{1} i \alpha \frac{d \varphi}{d y}-6 \tau y \frac{d^{2} \varphi}{d y^{2}}+ \\
+9 y \tau^{2} i \alpha\left(u^{\alpha}-c\right) \frac{d^{2} \varphi}{d y^{2}}+\frac{27}{2} i \alpha \tau^{2} y+3 y i \alpha^{3} \tau^{2}\left(u^{3}-c\right), \\
\theta_{1}=1-\tau i \alpha\left[3 / 2\left(1-y^{2}\right)-c\right]- \\
-\tau^{2}\left[9 y^{2}+9 / 4 \alpha^{2}\left(1-y^{2}\right)^{2}-3 c \alpha^{2}\left(1-y^{2}\right)+\alpha^{2} c^{2}\right] \\
\theta_{2}=\tau-\tau^{2} i \alpha\left[3 / 2\left(1-y^{2}\right)-c\right] . \tag{2.3}
\end{gather*}
$$

This system takes into account all terms up to and including τ^{2}. The boundary conditions (2.2) yield the relations

$$
\begin{gather*}
\eta=\frac{\varphi(0)}{c-3 / 2} e^{i \alpha(x-c t)} \\
2 i \alpha\left[\frac{d \varphi}{d y}\right]_{0}+3 \operatorname{ctg} \beta \frac{\varphi(0)}{c-3 / 2}+f(0) R+a^{2} R S \frac{\varphi(0)}{c-8 / 2}=0 \\
\frac{3 \varphi(0)}{R(c-3 / 2)}=s_{x \psi}(0) \tag{2.4}
\end{gather*}
$$

Eliminating $f(y)$ from (2.3), we obtain an equation for $\varphi(y)$

$$
i a\left[\left(u^{\circ}-c\right)\left(\frac{d^{2} \varphi}{d y^{2}}-a^{2} \varphi\right)-\frac{d^{4} u^{\circ}}{d y^{2}} \varphi\right]=2 i a \frac{d s_{x x}^{*}}{d y}+\frac{d^{2} s_{x y}^{*}}{d y^{2}}+\alpha^{2} s_{x y^{*}}^{*}(2.5)
$$

Here $s_{x x}^{*}$ and $s_{x y}^{*}$ have the form given in (2.3).

Fig. 2

Using the first equation in (2.3), we eliminate $f(0)$ from the boundary condition (2.4). The boundary condition for equation (2.5) at $y=0$ is then

$$
\begin{align*}
& \frac{a}{c-3 / 2}\left(3 \operatorname{ctg} \beta+\alpha^{2} R S\right) \varphi(0)+\alpha\left\{2 i \alpha\left[\frac{d \varphi}{d y}\right]_{0}+\right. \\
& \left.\quad+R\left(c-\frac{3}{2}\right)\left[\frac{d \varphi}{d y}\right]_{0}+R s_{x y}^{*}(0)\right\}- \\
& -i R\left[\frac{d s_{x y}^{*}}{d y}\right]_{0}=0, \quad \frac{3 \varphi(0)}{R(c-3 / 2)}=s_{x y}^{*}(0) . \tag{2.6}
\end{align*}
$$

The conditions $u^{\prime}(t, x, 1)=v^{\prime}(t, x, 1)=0$ yield

$$
\begin{equation*}
\varphi(1)=\left[\frac{d \varphi}{d y}\right]_{1}=0 \tag{2.7}
\end{equation*}
$$

The problem of solving (2.5) with the boundary conditions (2.6), (2.7) leads, as is well known [4], to the problem of finding $c=c(R$, $\alpha, \beta, \tau)$.
3. To find $c=c(R, \alpha, \beta, T)$ for small α we expand φ and c in terms of the parameter α :

$$
\varphi=\varphi_{1}^{\rho}+\alpha \varphi^{\prime}+\alpha^{2} \varphi^{\prime \prime}+\ldots, c=c^{0}+\alpha c^{\prime}+\alpha^{2} c^{\prime \prime}+\ldots \text { (3.1) }
$$

Substitute (3.1) into (2.5)-(2.7) and (2.3). For $\alpha=0$ we obtain

$$
\begin{gather*}
\frac{d^{2}}{d y^{2}}\left[\left(1-27 \tau^{2} y^{2}\right) \frac{d^{2} \varphi^{\circ}}{d y^{2}}\right]=0, \quad\left[\frac{d^{2} \varphi^{\circ}}{d y^{2}}\right]_{0}=0 \\
\frac{3 \varphi^{\circ}(0)}{c^{\circ}-2 / 2}=\left[\frac{d^{2} \varphi^{\circ}}{d y^{2}}\right]_{0}, \varphi^{\circ}(1)=\left[\frac{d \varphi^{\circ}}{d y}\right]_{L}=0 \tag{3.2}
\end{gather*}
$$

From (3.2) we find [4] the solution to the zeroth approximation

$$
c^{\circ}=3+82 / 4 \tau^{2}, \quad \varphi^{\circ}=(1-y)^{2}+\tau^{2}\left(9 y-27 / 2 y^{2}+9 / 2 y_{4}\right) . \text { (3.3) }
$$

The variable $\varphi^{\prime}(y)$ is then determined by the equation

$$
\frac{d^{2}}{d y^{2}}\left[\left(1-27 \tau^{2} y^{2}\right) \frac{d^{2} \varphi^{\prime}}{d y^{2}}\right]=i R\left[\left(\iota^{\circ}-c^{\circ}\right) \frac{d^{2} \varphi^{\circ}}{d y^{2}}-\frac{d^{2} u_{0}}{d y^{2}} \varphi^{\circ}\right], \text { (3.4) }
$$

with the boundary conditions

$$
\begin{gather*}
\frac{1}{c^{\circ}-\sqrt[3]{2}}\left[3 \operatorname{ctg} \beta+\alpha^{2} R S\right] \varphi^{\circ}(0)+ \\
+R\left(c^{\circ}-\frac{3}{2}\right)\left[\frac{d \varphi^{\prime}}{d y}\right]_{0}-i\left[\frac{d^{3} \varphi^{\prime}}{d y^{3}}\right]_{0}+3 \tau\left[\frac{d \varphi^{\circ}}{d y}\right]_{0}=0 \\
-\frac{3 \varphi^{\prime}(0)}{c^{\circ}-3 / 2}+\frac{3 \varphi^{\circ}(0) c^{\prime}}{\left(c^{\circ}-3 / 2\right)^{2}}+\left[\frac{d^{2} \varphi^{\prime}}{d y^{2}}\right]_{0}=0, \quad \varphi^{\prime}(1)=\left[\frac{d \varphi^{\prime}}{d y}\right]_{1}=0 \tag{3.5}
\end{gather*}
$$

Integrating (3.4), taking into account (3.3) and the boundary conditions (3.5), we find

$$
\begin{gather*}
c^{\prime}=i\left(1+{ }^{27 / 4} \tau^{2}\right)\left[^{6} / \mathrm{s} R\left(1+9.12 \tau^{2}\right)-\right. \\
\left.-\left(1-3.30 \tau^{2}\right) \operatorname{ctg} 3+3 \tau-1 / 3 R S\left(1-3.30 \tau^{2}\right)\right] \tag{3.6}
\end{gather*}
$$

Here, as everywhere else, we neglect terms of orders higher than τ^{2}.

For small α we retain the two leading terms in the expansions. We obtain then $c=c^{\circ}+\alpha c^{\prime}$, where c° and c^{\prime} are given by (3.3) and (3.6). Equating the imaginary part of c with zero, we find

$$
\begin{gather*}
\alpha\left[\% / 5 R\left(1+9.12 \tau^{2}\right)-\left(1-3.30 \tau^{2}\right) \operatorname{ctg} \beta+\right. \\
\left.3 \tau-1 / 3 \alpha^{2} R S\left(1-3.30 \tau^{2}\right)\right]=0 \tag{3.7}
\end{gather*}
$$

For $\beta=$ const, Eq. (3.7) defines a neutral surface in the R, α, M space. This surface consists of the plane $\alpha=0$ and the surface ABCDE, which intersect along the parabola (Fig. 2)

$$
\begin{equation*}
R=8 / 6 \operatorname{ctg} \beta\left(1-10.35 \tau^{2}\right)-2.50 \tau \tag{3.8}
\end{equation*}
$$

The portion EA of the parabola (3.8) is a branching line of the neutral surface.

For $\tau=\lambda=0$ we have in the α, R plane a neutral curve, consisting of the axis $\alpha=0$ and the line $E D$. The branch point E defines then [4] the minimal critical value $R=5 / 6 \operatorname{ctg} \beta$ for $S \neq 0$.

From (3.7) one can see that when $S \neq 0$ the inequality

$$
R \leqslant 5 / 6\left(1-10.35 \tau^{2}\right) \operatorname{ctg} \beta-2.50 \tau
$$

must hold on the surface $A B C D E$ if α is to be real. Therefore for small α the surface $A B C D E$ cannot intersect the α axis.

Taking account of (3.6) one can easily see that when $\tau<1 / 6$, $S \neq 0$, the values of c_{i} are negative for $\alpha>\alpha_{0}$ (α_{0} are the values of α on the surface ABCDE) and positive for $\alpha<\alpha_{0}$.

Taking into account that $\lambda=\mu / G$, where G is the elastic shear modulus, we find from (1.3) that T is independent of μ. Therefore, if $\tau=0$ because of $G=\infty$, then for $R=0, \mu=\infty$ we find [4] that the surface $A B C D E$ does not intersect the α axis in the case $S \neq 0$. For $S=0$ the surface $A B C D E$ intersects the α axis at $\alpha=\infty$.

For a Newtonian fluid ($G=\infty$) the branch point E of the neutral curve coincides with the origin for $\beta=\pi / 2$. For a viscoelastic fluid with $G=$ const $\neq \infty$, the Reynolds number is equal to zero at the branch point of the neutral curve when

$$
\tau=A=1 / 17.25\left[-2.50+\left(6.25+2.88 \operatorname{ctg}^{2} \beta\right)^{1 / 2}\right] \operatorname{tg} \beta
$$

Consequently, in the case of a Newtonian fluid the critical Reynolds number is equal to zero for flow on a vertical plane ($\beta=\pi / 2$), whereas in the case of a viscoelastic fluid the critical Reynolds number is equal to zero for $\beta=\operatorname{arc} \operatorname{ctg}(3 \tau)$. Thus, for example, for $\tau=0.1$ the critical Reynolds number is equal to zero for flow along a plane inclined at $B \approx 73^{\circ}$ with respect to the horizontal.

Fig. 2 shows the neutral surface for the case $S \neq 0$. The equations of motion (1.3) have an exact solution, corresponding to rectilinear laminar flow, for $\tau<1 / 6$, and this flow is stable with respect
to two-dimensional perturbations in the region between the planes $\alpha=0, \tau=0, \mathrm{R}=0$ and the surface ABCDE. The plane $\alpha=0$ and the surface $A B C D E$ are a neutral surface, whose branching line EA is an arc of the parabola (3.8) in the plane $\alpha=0$. The parabola has an axis parallel to the R axis, and its vertex is at the point F, whose coordinates are

$$
\alpha=0, \quad R=0.83 \operatorname{ctg} \beta+0.18 \operatorname{tg} \beta, \quad \tau=-0.15 \operatorname{tg} \beta .
$$

The flow of a film of viscoelastic fluid is less stable than the flow of a Newtonian fluid with the same viscosity.

REFERENCES

1. L. I. Sedov, "Different definitions of the rate of change of a tensor," PMM, vol. 24, no. 3, 1960.
2. J. G. Oldroyd, "Non-Newtonian effects in steady motion of some idealized elastico-viscous liquids," Proc. Roy. Soc. A, vol. 245, по. 1241, p. 278-297, 1958.
3. Yu. P. Ivanilov, "On the stability of plane-parallel flow of a viscous fluid over an inclined bottom," PMM, vol. 24, no. 2, 1960.
4. Yih Chia-shun, "Stability of liquid flow down an inclined plane," Phys. Fluids, vol. 6, no. 3, 1963.

11 December 1964
Voronezh

